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Abstract

We describe a method for the numerical solution of high-speed reactive flow in complex geometries using over-

lapping grids and block-structured adaptive mesh refinement. We consider flows described by the reactive Euler

equations with an ideal equation of state and various stiff reaction models. These equations are solved using a second-

order accurate Godunov method for the convective fluxes and a Runge–Kutta time-stepping scheme for the source term

modeling the chemical reactions. We describe an extension of the adaptive mesh refinement approach to curvilinear

overlapping grids. Numerical results are presented showing the evolution to detonation in a quarter-plane provoked by

a temperature gradient and the propagation of an overdriven detonation in an expanding channel. The first problem,

which considers a one-step Arrhenius reaction model, is used primarily to validate the numerical method, while the

second problem, which considers a three-step chain-branching reaction model, is used to illustrate mechanisms of

detonation failure and rebirth for the channel geometry.

� 2003 Elsevier B.V. All rights reserved.
1. Introduction

We consider the numerical solution of the reactive Euler equations in two-dimensional complex ge-

ometries. We describe a robust numerical method that may be used to handle high-speed reactive flows

involving the birth, propagation and failure of detonation waves. Such flows are unsteady and highly
nonlinear with the flow hydrodynamics coupled strongly to the behavior of the reaction zone. The reaction

zone is typically very thin so that an accurate numerical resolution of the reaction zone requires a very fine
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grid. We use structured adaptive mesh refinement (AMR) to locally increase resolution. Our AMR scheme

is based on the methodology originally developed by Berger and Oliger [1] for hyperbolic equations. In this

approach a hierarchy of refinement grids is constructed dynamically based on a suitable error estimate of

the solution. The reactive Euler equations are discretized on each grid using a second-order, shock-cap-

turing scheme. The convective flux terms are handled using a second-order extension of Godunov�s scheme

[2] with an approximate Riemann solver. The stiff source term modeling the chemical reaction is solved

numerically using an adaptive Runge–Kutta scheme. The overall method provides a robust numerical

approach for a wide class of problems.
Our numerical method uses composite overlapping grids to represent the problem domain as a collection

of structured curvilinear grids. This method, as discussed in [3], allows complex domains to be represented

with smooth grids that can be aligned with the boundaries. The use of smooth grids is particularly attractive

for reactive flow problems where the solution is sensitive to any grid induced numerical artifacts. Also, the

majority of an overlapping grid often consists of Cartesian grid cells so that the speed and low memory

usage inherent with such grids is retained. Overlapping grids have been used successfully for the numerical

solution of a variety of problems involving inviscid and viscous flows, see [3–13] for example. The use of

adaptive mesh refinement in combination with overlapping grids has been considered by Brislawn et al.
[14], Boden and Toro [15], and Meakin [13]. In this paper, we extend the application of overlapping grids

with AMR to problems involving reactive flow.

Solving partial differential equations on overlapping grids with AMR involves considerable program-

ming complexity due to the multiple computational index spaces and curvilinear geometries as well as the

overlapping grid interpolation and hole cutting requirements. Our reactive flow solver uses many of

the capabilities of the Overture 3 object-oriented class library [16,17] to handle this complexity and for the

interactive and post-processing visualization of the solutions. As part of the development of our numerical

method for the reactive Euler equations, we have built a general AMR capability into Overture. This AMR
toolkit is designed to be fairly general and may be used to solve a wide class of problems on structured grids

and overlapping grids.

In our numerical approach we choose to resolve, with AMR, the fine temporal and spatial scales dictated

by the chemical reactions. This is done so that we may apply our method to problems in which the coupling

of the reaction zone and the flow hydrodynamics is important, such as unsteady flows involving detonation

formation and failure, among others. For other problems involving high-speed reactive flow it is possible to

develop numerical methods that under-resolve the reaction zone and still obtain good accuracy (see [18], for

example). There is a computational savings in this latter approach, but there are also well-known difficulties
arising from the smearing of the detonation wave inherent in shock-capturing schemes (see [19,20], for

example).

The subsequent discussion is organized as follows. The Euler equations for inviscid reactive flow are

given in Section 2. In these equations, we consider two state-sensitive reaction models. The first is a

standard one-step Arrhenius reaction model, while the second is a three-step chain-branching reaction

model similar to the one introduced by Kapila [21] and later discussed by Short et al. [22] in the context of

detonation stability. The numerical method is discussed in detail in Section 3. There we outline the over-

lapping grid framework and discuss both the implementation of the AMR scheme and the discretization of
the equations within that framework. In Section 4, we present results for two basic problems involving

high-speed reactive flow. The first problem involves the formation of a radially symmetric expanding

detonation wave from an initial hot spot and is used to illustrate the numerical method and to test its

accuracy. This problem is inspired by the work of Nikiforakis and Clarke [23,24] on the evolution to

detonation of a hot spot in a two-dimensional rectangular channel and by the work of Kapila et al. [25] on
3 The Overture software is available from http://www.llnl.gov/casc/Overture.

http://www.llnl.gov/casc/Overture
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the evolution to detonation provoked by an initial temperature gradient in a one-dimensional geometry.

For this problem, we compute the solution using both a single Cartesian grid and a composite overlapping

grid. This allows us to study the effect of the overlap on the quality of the solution. We also compare the

solutions computed from these two grids with the radially symmetric solution computed on a one-

dimensional grid using an extension of the method described in [25]. It is found that there is no significant

error in the numerical solution computed on the overlapping grid as a result of the detonation wave passing

through the overlapping interface between grids. The second problem discussed in Section 4 considers an

overdriven detonation propagating in a channel with a smooth backward-facing step. This problem is
chosen to give an indication of the ability of the method to handle complex geometries and shows

mechanisms of detonation failure and rebirth within the three-step reaction model.
2. Governing equations

We consider a high-speed reactive flow in which diffusive transport is negligible so that the flow is

governed by the reactive Euler equations. In two space dimensions, the equations are

ut þ fðuÞx þ gðuÞy ¼ hðuÞ; ð1Þ

where
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The state of the flow depends on position ðx; yÞ and time t and is described by its density q, velocity ðu; vÞ,
pressure p and total energy E. The flow is a mixture of mr reacting species whose mass fractions are given by

Y. The source term models the chemical reactions and is described by a set of mr rates of species production

given by R. The total energy is taken to be

E ¼ p
c� 1

þ 1

2
qðu2 þ v2Þ þ qq;

where c is the ratio of specific heats and q represents the heat energy due to chemical reaction.
While the numerical implementation of the governing equations (to be discussed in the next section) is

designed to handle an arbitrary number of reacting species, we will focus on two representative reaction

models for the purposes of this paper. The first is a simple one-step, irreversible reaction given by

F!k P;

where F and P denote fuel and product species, respectively, and k is an Arrhenius reaction rate whose

(dimensionless) form is taken to be

k ¼ r exp
1

�
1

��
� 1

T

��
; ð3Þ

where r is a pre-exponential frequency factor, � is a reciprocal activation energy and T ¼ p=q is a tem-

perature (with gas constant normalized to 1). For this case, Y ¼ Y is a scalar, defined to be the fraction of

product, and



W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 191 (2003) 420–447 423
R ¼ ð1� Y Þk; q ¼ YQ; ð4Þ

where Q < 0 is a heat release, taken to be negative for an exothermic reaction. The value for r in this model
essentially picks the time scale. Following [25], we choose an induction time scale given by

r ¼ �

ðc� 1ÞQ : ð5Þ

This choice implies that a spatially uniform sample with T ¼ 1 initially will explode at t ¼ 1 for the limiting

case � ! 0.

The second model represents a three-step, chain-branching reaction of the form

F !kI Y; initiation;

FþY !kB 2Y; branching;

Y !kC P; completion;

where F, Y and P denote fuel, radical and product species, respectively, and kI, kB and kC are the rates of

the initiation, branching and completion reactions, respectively (see [22]). The initiation and branching

rates are assumed to have state-sensitive Arrhenius forms

ki ¼ exp
1

�i

1

Ti

��
� 1

T

��
; i ¼ I or B; ð6Þ

where �I and �B are reciprocal activation energies and TI and TB are cross-over temperatures. The com-

pletion reaction rate is taken to be kC ¼ 1 which specifies the time scale. For this case, Y ¼ ½Y1; Y2�T, where
Y1 is the fraction of product and Y2 is the fraction of radical (the fraction of fuel is 1� Y1 � Y2). Laws of
mass action give

R ¼ Y2kC
ð1� Y1 � Y2ÞðkI þ Y2kBÞ � Y2kC

� �
; ð7Þ

and the contribution to the total energy is

q ¼ Y1Q1 þ Y2Q2:

Here, Q1 < 0 is the total chemical energy available in the unreacted mixture and Q2 > 0 is the amount of

energy absorbed by the initiation and branching reactions to convert fuel to (energetic) radical.

For a particular choice of the reaction model, we will be interested in the solution of the governing

equations for a domain X and for t > 0. For a given problem we will specify initial conditions for the state u

and will specify boundary conditions on oX. These boundary conditions, as indicated in Section 4, will take

various forms including inflow and outflow boundary conditions, reflectional (symmetry) boundary con-

ditions, and no-flow boundary conditions on solid walls.
3. Numerical method

The governing equations (1) and (2) are discretized on a collection of curvilinear, logically rectangular,

overlapping grids. For a given problem domain X, a collection of overlapping grids may be constructed

using the grid generator Ogen [26]. Our flow solver imports the grid information from Ogen and implements

a finite volume approximation of the governing equations for the grid together with a scheme of AMR in
order to resolve rapid spatial and temporal variations in the solution. Much of the infrastructure for
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adaptive grids is not specific to any particular problem and thus is implemented as a set of general AMR

functions that is part of the Overture software framework [16,27].

We begin our discussion of the numerical method with a brief overview of the overlapping grid approach

in Section 3.1, a more detailed discussion may be found elsewhere [3]. In Section 3.2, we discuss the AMR

scheme, which is an extension of the block-structured AMR approach developed originally by Berger and

Oliger [1,28]. In this discussion, we focus on the implementation to overlapping grids and on the choice of

an error-estimator suitable for our discretization of the reactive Euler equations. A method of discretization

of these equations is carried out on each component grid and this is discussed in detail in Section 3.3.

3.1. Overlapping grid framework

Putting aside the reactive Euler equations for the moment, let us suppose we wish to solve some PDE on
a domain X in d space dimensions. An overlapping grid G for X consists of a set of Ng component grids Gg,

i.e.,

G ¼ fGgg; g ¼ 1; 2; . . . ;Ng:

The component grids overlap and cover X. Each component grid is a logically rectangular, curvilinear grid

defined by a smooth mapping Cg from parameter space r (the unit-square or unit-cube) to physical space x:

x ¼ CgðrÞ; r 2 ½0; 1�d ; x 2 Rd :

The mapping is used to define grid points at any desired resolution as required when a grid is refined.

Variables defined on a component grid, such as the coordinates of the grid points, are stored in rectangular

arrays. For example, grid vertices are represented as the array

xg
i : grid vertices; i ¼ ði1; . . . ; idÞ; ia ¼ 0; . . . ;Na; a ¼ 1; 2; . . . ; d;

where Na is the number of grid cells in a-coordinate direction. We note that grid vertex information and
other mapping information is not stored for Cartesian grids which results in a considerable savings in

memory use.

Fig. 1 shows a simple overlapping grid consisting of two component grids, an annular grid and a

background Cartesian grid. The top view shows the overlapping grid in physical space while the bottom

views show each component grid in its parameter space. In this particular example, the annular grid cuts a

hole in the Cartesian grid so that the latter grid has a number of unused points marked by open circles. The

other points on the component grids are classified as either discretization points (where the PDE or

boundary conditions are discretized) or interpolation points. This information is supplied by Ogen and is
held in an integer mask array. (In fact the bit representation of each element of the mask holds additional

grid information including, for example, which points are hidden by refinement grids.) In addition, each

boundary face of each component grid is classified as either a physical boundary (where boundary con-

ditions are to be implemented), a periodic boundary or an interpolation boundary, and this information is

held in the array bcðb; aÞ, where b ¼ 1; 2 denotes the boundary side. Typically, one or more lines of ghost

points are created for each component grid to aid in the application of boundary conditions.

Solution values at interpolation points of a grid g1, for example, are determined by interpolation from

interpolee points on another grid g2. The interpolee points on grid g2 are required to be either discretization
points or interpolation points. The interpolation formula is said to be explicit if the interpolee points are all

discretization points. If some interpolee points are themselves interpolation points then the interpolation is

said to be implicit. Interpolation is performed in parameter space (unit-square coordinates). For each in-

terpolation point x1 on grid g1, its parameter space coordinates, r2 ¼ C�1
g2
ðx1Þ, on grid g2 may be found using

the inverse mapping. In parameter space, standard tensor-product polynomial interpolation is used, such as



Fig. 1. The top view shows an overlapping grid consisting of two structured curvilinear component grids. The bottom views show the

component grids in the unit square parameter space. Grid points are classified as discretization points, interpolation points or unused

points. Ghost points are used to apply boundary conditions on each component grid according to its bc array, which is indicated for

the annular grid.
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linear interpolation (i.e., bi-linear for d ¼ 2 or tri-linear for d ¼ 3). For first order hyperbolic systems, such

as the reactive Euler equations considered here, linear interpolation is sufficient for second-order accuracy,

while the solution of a second-order elliptic equations, such as Laplace�s equation, would normally require

quadratic interpolation for second-order accuracy; see the discussion in [3] for further details.

The numerical solution uni � uðxi; tnÞ for a PDE is advanced from time t ¼ 0 to t ¼ tfinal on an over-

lapping grid according to the basic algorithm given in Fig. 2. This algorithm includes steps for adaptive

mesh refinement which are carried out every nregrid time steps. The AMR steps involve estimating the error,
regridding to better resolve the solution, and interpolation of the solution from the old overlapping grid,

including its hierarchy of refined grids, to a new one. These steps are explained in more detail in the next

section. The algorithm also includes a function for advancing uni one time step Dt on an overlapping grid.

This function, called timeStep in the algorithm, defines the discretization of the PDE, the reactive Euler

equations for this paper, and this is discussed in Section 3.3.

3.2. Adaptive mesh refinement

The adaptive mesh refinement approach adds new refinement grids where the error is estimated to

be large. The refinement grids are aligned with the underlying base grid (i.e., the refinement is done in



Fig. 2. The basic time stepping algorithm including an AMR regrid performed every nregrid steps.

426 W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 191 (2003) 420–447
parameter space) and are arranged in a hierarchy with the base grids belonging to level ‘ ¼ 0, the next finer

grids being added to level ‘ ¼ 1 and so on. Grids on level ‘ are refined by a refinement ratio nr from the

grids on level ‘� 1. The grids are properly nested so that a grid on level ‘ is completely contained in the set

of grids on the coarser level ‘� 1. This requirement is relaxed at physical boundaries to allow refinement

grids to align with the boundary. Fig. 3 shows a sample block-structured AMR grid. A refinement ratio

nr ¼ 2 is used in the figure for illustrative purposes and is supported by our AMR functions, although we

use nr ¼ 4 for the calculations in this paper.
Fig. 3. Block structured AMR. Ghost points on refinement grids are interpolated from sibling grids at the same level or parent grids on

the next coarser level. Coarse grid points are interpolated where they are covered by refinement grids.



W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 191 (2003) 420–447 427
The algorithm given in Fig. 2 includes the essential steps in the AMR algorithm. These steps involve

error estimation, regridding and AMR interpolation as described in turn below. For simplicity the algo-

rithm assumes a fixed time step for all grids. In general a larger time step can be used on coarser grids,

resulting in significant speedups when there are relatively few grid points on the finest level. For the

computations given in this paper a fixed time step was used. The use of different time steps for different

levels is left as a future enhancement.

3.2.1. Error estimation

The purpose of error estimation is to identify and tag cells where additional refinement is required. In

practice it is important to have a robust error estimation scheme which may overestimate the regions re-

quiring refinement. Typically, error estimates are based on a combination of magnitudes of first and second

differences in the numerical solution. For example, a general form, which could be applied to the solution of
a variety of PDEs, is given by

ei ¼
Xm
k¼1

ek;i; ð8Þ

where

ek;i ¼
1

d

Xd

a¼1

c1
sk
jD0auk;ij

�
þ c2

sk
jDþaD�auk;ij

�
ð9Þ

is an estimate of the error in the kth component of ui. In (9), sk is a scale factor for uk;i, c1 and c2 are

constants (weights), and D0a, Dþa and D�a are the un-divided central, forward and backward difference

operators, respectively, in the a-direction in index space. The basic motivation for this formula is that finite

differences should give accurate approximations to the corresponding derivatives when the solution is

smooth with respect to the grid. Thus, for smooth solutions the scaled undivided differences should be small

when the grid is sufficiently fine.
For the reactive Euler equations, we have adopted a modification of the general form in (8) and (9). In

addition to a measure of the second difference in density (designed to detect shocks and contact discon-

tinuities mainly), the modified form includes an estimate of the truncation error in the source calculation

(designed to detect rapid changes near the reaction zone). The modified form is given by

ei ¼
1

2

X2

a¼1

c2
sq
jDþaD�aqij þ

c3
ss

si; ð10Þ

where c3 is a constant, si is an estimate for the source term truncation error (as described in more detail in

Section 3.3.3), and ss is a scale factor for the truncation error.

Once the error estimate is computed for all grids, it is smoothed using a few sweeps of an under-relaxed

Jacobi iteration. After each sweep, the error is interpolated to neighboring component grids. This

smoothing process serves the purpose of propagating the error to nearby grid cells whether they be on

refinement grids from the same component grid or on neighboring component grids. The latter is partic-

ularly important when a sharp feature of the solution approaches an overlapping grid interpolation
boundary. In this case, the error smoothing ensures that refinement grids are created across the overlap

ahead of the feature so that by the time the feature reaches the overlap, refinement grids will already be in

place on the neighboring component grid.

3.2.2. Regridding

The adaptive grid is rebuilt after every nregrid time steps. Given the smoothed error estimate, we determine

which cells to refine by tagging cells where the error estimate exceeds a chosen tolerance. A set of boxes is
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generated in index space (as described below) which covers the region of tagged cells, and these boxes form

the boundaries of the new refined grids. Once a new set of grids is generated, the solution is transferred

from the old AMR grid hierarchy to the new one. As a general rule, solution values on the new grid are

interpolated from the finest level grid available on the old grid.

As the solution evolves in time, sharp features (such as shocks or detonations) move and a new AMR

grid is needed based on a new error estimate. There is a computational cost associated with regridding so

that it is desirable to increase the number of time steps that can be taken safely with the current AMR grid.

To do this, the boundary of the region of tagged cells is increased slightly according a chosen integer nbuffer.
In our calculations, we take the width of the buffer zone to be nbuffer ¼ 2 so that the number of steps between

regridding is the refinement ratio nr times the number of buffer cells, nregrid ¼ 2nr. It is assumed here that a

sharp feature moves at most one grid cell per time step on the fine grid.

The original block-structured AMR regridding algorithm can be found in the thesis of Berger [28]. Our

regridding algorithm is based on that of Berger and Rigoutsos [29], and extended to handle the case of

overlapping grids as described below.

The basic idea for building new refinement grids at level ‘þ 1 for a component grid at level ‘ is illus-

trated in Fig. 4. The goal is to cover a set of tagged cells by a set of non-overlapping boxes which form the
boundaries of the refinement grid patches. The boxes are constructed iteratively by recursive sub-divisions

until the boxes become sufficiently full of tagged cells or until the boxes become too small. The basic steps in

the iteration may be outlined as follows:

(1) Fit an initial box to enclose all tagged cells provided by the smoothed and buffered error estimator.

(2) Recursively sub-divide the box by splitting the box along its longest direction. The position of the split

is intended to separate clusters of tagged cells and is based on a histogram formed from the sum of the

number of tagged cells in each plane perpendicular to the longest direction, see [29] for more details.

(3) After splitting the box, fit new bounding boxes to the two new sub-boxes and repeat the process. Con-
tinue until the box becomes too small or the fraction of tagged cells becomes larger than an efficiency

factor gr (taken to be 0.7 for our calculations).

After the new boxes have been constructed in parameter space, we must determine the location of the

new grid points in physical space, their classification, and their connectivity to neighboring grids. For a

non-Cartesian grid, the grid point locations are determined by evaluating the mapping, x ¼ CgðrÞ, asso-
ciated with the grid, a feature of our AMR framework that is particularly important when refining
Fig. 4. The three basic steps in regridding for a sample two-dimensional grid: (1) create a box to enclose tagged cells, (2) split the box in

two along its long (horizontal) direction based on a histogram of tagged cells, (3) fit new boxes to each split box and repeat the steps as

needed.
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boundary fitted grids. Once the points are located, they are classified as either discretization, interpolation

or unused points. For interpolation points on the boundary between discretization and unused points, we

must determine from which grid to interpolate, see Fig. 5. We have devised an algorithm that classifies the

refinement grid points and computes the interpolation information. The algorithm makes use of the in-

formation from coarser refinement levels so that it is relatively fast and efficient. For example, the fine grid

interpolation points are determined by looking at the interpolation points on the coarse levels in order to

determine the likely interpolee points. The order of preference for the interpolation of an overlapping grid

interpolation point is
(1) interpolate from a refinement grid at the same level belonging to a different base grid;

(2) interpolate from a refinement grid at a lower level belonging to a different base grid.

Note that interpolation points of grids on level ‘ never interpolate from finer grids on level ‘þ 1.

3.2.3. AMR interpolation

Once a new set of grids is generated, the solution is transferred from the old AMR grid hierarchy to the

new one. Solution values on the new grid are interpolated from the finest level grid available on the old grid

hierarchy.

The other basic AMR interpolation operations involve interpolation at ghost points of refinement grids

and interpolation of coarse grid points that are hidden by refinement grids. Before a time step is taken,

solution values at ghost points on all refinement grids are evaluated either by applying a discretization of a

boundary condition or by interpolation. In the latter case, the value is obtained by interpolation from a
neighboring grid at the same refinement level or by interpolation from a grid at the next coarser level. This

often amounts to a direct copy for the case when the data are available from a neighboring grid at the same

refinement level. After a time step is taken, solution data on coarse grid points that are hidden by fine

grids are interpolated from the data on finer grids. In general, we support interpolation of cell-centered or
Fig. 5. Overlapping grids and AMR; a view of the overlap region showing the interpolation between refinement grids from different

base grids. The black squares indicate interpolation points.
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node-centered data for various refinement factors, such as nr ¼ 2, 3 or 4, and for different orders of in-

terpolation. For the computations presented here we use linear interpolation at ghost points and injection

of fine grid values to the hidden coarse grid values.

3.3. Discretization of the governing equations

We now return to the reactive Euler equations in two space dimensions as given in (1) and (2) and

describe a method of discretization of the equations for a representative component grid (on the base level

or on any refinement level). As mentioned previously, for each component grid there is a smooth mapping,

x ¼ CgðrÞ, from parameter space r ¼ ðr; sÞ on the unit square to physical space x ¼ ðx; yÞ. In parameter

space, (1) becomes

Ut þ FðUÞr þGðUÞs ¼ HðUÞ; ð11Þ

where

U ¼ Ju; F ¼ ysf � xsg; G ¼ �yrf þ xrg; H ¼ Jh; ð12Þ

and

Jðr; sÞ ¼ oðx; yÞ
oðr; sÞ

����
����:

The partial derivatives of the transformation and the Jacobian are regarded as known functions, and these

are supplied on each component grid from the mapping.

The mapped equations (11) and (12) are discretized using a finite-volume, shock-capturing scheme. On

the unit square, we define a uniform grid ðri; sjÞ ¼ ðiDr; jDsÞ, i ¼ 0; . . . ;Nr, j ¼ 0; . . . ;Ns, with constant grid

spacings Dr and Ds, and set

Un
i;j ¼

1

DrDs

Z sj

sj�1

Z ri

ri�1

Uðr; s; tnÞ dr ds: ð13Þ

The cell average is advanced from a time tn to tnþ1 ¼ tn þ Dtn on the grid using the conservative form

Unþ1
i;j ¼ Un

i;j �
Dt
Dr

F
nþ1=2
i;j

�
� F

nþ1=2
i�1;j

�
� Dt
Ds

G
nþ1=2
i;j

�
�G

nþ1=2
i;j�1

�
þ DtHnþ1=2

i;j ; ð14Þ

where F
nþ1=2
i;j and G

nþ1=2
i;j are numerical fluxes and H

nþ1=2
i;j is a numerical source term. The numerical fluxes

and source term are computed in a predictor–corrector fashion using a modification of the methods de-

scribed in [30,31]. The overall method is a second-order extension of Godunov�s method [2] with a Runge–

Kutta type error-control scheme to handle the source term.

Before proceeding with a discussion of each term in (14), we note that the calculation of these terms is

typically the most expensive part of a particular simulation (see, for example, the performance statistics

given in Section 4.3). For a calculation on an overlapping grid with AMR, there is often a significant

number of points, either unused or hidden by refinement, where the calculation of the terms in (14) is not

needed. This information is contained in the mask array for each component grid, and we use this infor-
mation to update Un

i;j according to (14) only where needed for computational efficiency.

3.3.1. Predictor step

The predictor step determines provisional values for U at tn þ ð1=2ÞDtn using first-order Taylor ap-
proximations. These approximations are written in terms of characteristic variables in order to incorporate
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upwind differencing and slope limiting. This approach requires the eigenvalues and eigenvectors of the

derivatives FU and GU. For example, let

FU ¼ a3ða1fu þ a2guÞ;

where

a1 ¼
ysffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2s þ y2s
p ; a2 ¼

�xsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2s þ y2s

p ; a3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2s þ y2s

p
J

:

The eigenvalues of FU are

kðpÞ ¼
a3ðw� cÞ if p ¼ 1;

a3w if p ¼ 2; . . . ;m� 1;

a3ðwþ cÞ if p ¼ m;

8<
: ð15Þ

where w ¼ a1uþ a2v is the component of the velocity normal to the curve r ¼ constant, c ¼
ffiffiffiffiffiffiffiffiffiffi
cp=q

p
is the

speed of sound, and m is the number of equations, equal to 5 for the case of the one-step reaction model or
6 for the case of the chain-branching reaction model. For m ¼ 6, the corresponding (right) eigenvectors vðpÞ,

p ¼ 1; . . . ;m, are given by the columns of the matrix

V ¼

1 0 1 0 0 1

u� a1c a2 u 0 0 uþ a1c
v� a2c a1 v 0 0 vþ a2c
h� wc a2u� a1v 1

2
ðu2 þ v2Þ �Q1 �Q2 hþ wc

Y1 0 0 1 0 Y1
Y2 0 0 0 1 Y2

2
66666664

3
77777775
; ð16Þ

where h ¼ ðE þ pÞ=q is the total enthalpy. The reduction for m ¼ 5 is straightforward.

Similar expressions may be obtained for the eigenvalues and eigenvectors of GU. Let

GU ¼ b3ðb1fu þ b2guÞ;

where

b1 ¼
�yrffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ y2r

p ; b2 ¼
xrffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2r þ y2r
p ; b3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þ y2r

p
J

;

and let l ðpÞ and wðpÞ denote, respectively, the m eigenvalues and eigenvectors of GU. Formulas for these may
be found using (15) and (16) with ða1; a2; a3Þ replaced by ðb1; b2; b3Þ and with w ¼ b1uþ b2v.

Let us consider a representative cell centered at ðri�1=2; sj�1=2Þ. The predictor step requires various ap-

proximations for U at tn þ ð1=2ÞDtn. For example, at ðri; sj�1=2Þ we use

U�
i;j;þDr=2 ¼ Un

i;j �
1

2

X
kðpÞ>0

Dt
Dr

kðpÞ
�

� 1

�
aðpÞvðpÞ � Dt

2Ds

X
p

l ðpÞbðpÞwðpÞ þ Dt
2
Hn

i;j; ð17Þ

where the þDr=2 subscript indicates the direction in which the expansion is taken. In (17), the eigenvalues

and eigenvectors are evaluated at the cell center using Un
i;j, and

aðpÞ ¼ minmod aðpÞ
0 ; aðpÞ

1

� �
; bðpÞ ¼ minmod bðpÞ

0 ; bðpÞ
1

� �
;
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where minmod is the usual minimum-modulus function, and aðpÞ
k and bðpÞ

k are found from

Un
iþk;j �Un

i�1þk;j ¼
X
p

aðpÞ
k vðpÞ; Un

i;jþk �Un
i;j�1þk ¼

X
p

bðpÞ
k wðpÞ

with k ¼ 0 or 1. The source term Hn
i;j in (17) is computed using an error-control scheme as described below.

Expressions similar to (17) are used to give U�
i;j;�Dr=2 and U�

i;j;�Ds=2. These values are used as left and right
states in an approximate Riemann solver in order to obtain the numerical fluxes in (14). Finally, for the cell

center at tn þ 1
2
Dtn, we use the approximation

U�
i;j;0 ¼ Un

i;j �
Dt
2Dr

X
p

kðpÞaðpÞvðpÞ � Dt
2Ds

X
p

l ðpÞbðpÞwðpÞ þ Dt
2
Hn

i;j: ð18Þ

which is needed in the calculation of the source term H
nþ1=2
i;j in (14).

3.3.2. Corrector step

The correction step uses an approximate Riemann solver to obtain the numerical fluxes in (14). For

example, in order to compute F
nþ1=2
i;j we consider the Riemann problem

Ut þ FðUÞr ¼ 0; t > 0; jrj < 1;
Uðr; 0Þ ¼ UL if r < 0;
UR if r > 0;

	

where UL ¼ U�
i;j;þDr=2 and UR ¼ U�

iþ1;j;�Dr=2. There are many choices of approximate Riemann solvers

available (see [32], for example), but we have adopted a simple modification of Roe�s solver [33] for the

calculations in this paper. From the components of UL and UR we define the average quantities �uu, �vv, �hh and
�YY using the general form

�hh ¼
ffiffiffiffiffi
qL

p
hL þ

ffiffiffiffiffiffi
qR

p
hRffiffiffiffiffi

qL

p þ ffiffiffiffiffiffi
qR

p ;

where h is replaced by u, v, h or Y. An average sound speed �cc may be computed from the formula

�cc2

c� 1
¼ �hh� 1

2
�uu2

�
þ �vv2

�
� �qq ;

where �qq is the average heat energy due to chemical reaction computed using �YY. Eigenvalues �kkðpÞ and ei-

genvectors �vvðpÞ may be computed using the averaged quantities in (15) and (16), respectively, and then �aaðpÞ

may be determined from

UR �UL ¼
X
p

�aaðpÞ�vvðpÞ:

We may now determine the numerical flux F
nþ1=2
i;j in (14) using

F
nþ1=2
i;j ¼

FðULÞ if �kkð1Þ > 0;

FðULÞ þ �aað1Þ �kkð1Þ�vvð1Þ if �kkð1Þ < 0 and �kkð2Þ > 0;

FðURÞ � �aaðmÞ�kkðmÞ�vvðmÞ if �kkðmÞ > 0 and �kkð2Þ < 0;

FðURÞ if �kkðmÞ < 0:

8>>>>><
>>>>>:

ð19Þ
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The numerical flux given in (19) is the basic form, but in practice we also incorporate a �sonic fix� following
the discussion in [34]. The numerical flux in the s-direction, Gnþ1=2

i;j , may be computed using straightforward

modifications of the formulas above.

Following Colella and Woodward [35] we also add a small artificial viscosity contribution to the nu-

merical fluxes. For example, we add

mniþ1=2;jDr Un
iþ1;j

�
�Un

i;j

�
to F

nþ1=2
i;j , where

mniþ1=2;j ¼ mc maxð�rh �Un
iþ1=2;j; 0Þ: ð20Þ

In (20), mc is a constant (approximately equally to 1 for our calculations) and rh �Uiþ1=2;j is a difference

approximation to the divergence of the velocity, ux þ vy . A similar term is added to G
nþ1=2
i;j . We found this

term to be helpful in suppressing small, transverse numerical oscillations that may form just behind a shock

or detonation that is travelling parallel to a coordinate direction. These oscillations are on the grid-cell scale
and are not associated with oscillations that may develop due to a transverse instability of the detonation

wave. The latter occurs on the scale of the reaction zone and this scale is resolved over several cells on the

finest grid in our computations.

3.3.3. Source term

The source terms in (14), (17) and (18) are computed using an error-control scheme. This is done so that

both stiff and non-stiff source term contributions can be handled accurately, and so that an estimate of the

truncation error committed by the numerical treatment of the source term is available for the error esti-

mator in (10). In order to compute the source terms, we consider the mr ordinary differential equations

implied by the chemical reaction terms in (11). These ODEs have the general form

yt ¼ UðyÞ; ð21Þ

where y ¼ qY and U ¼ qR. The function U on the right-hand side of (21) depends on all components
of U in general, but for the purposes of the source term calculations we consider it to be a function of y

alone and hold the other components fixed. For example, let us focus first on the calculation of

Hn
i;j. For this case we take the fixed components to be those in Un

i;j. We may now compute the nu-

merical solution of (21) using a Runge–Kutta error-control scheme involving the following order ð2; 3Þ
pair:

~yy ¼ yþ K2; ðorder 2Þ;
ŷy ¼ yþ 2

9
K1 þ

3

9
K2 þ

4

9
K3; ðorder 3Þ;

where

K1 ¼ dtUðyÞ;
K2 ¼ dtU y

�
þ 1

2
K1

�
;

K3 ¼ dtU y

�
þ 3

4
K2

�
:
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Initially, y ¼ ðqYÞni;j and dt ¼ ð1=2ÞDtn. An estimate for the truncation error is si;j ¼ k~yy� ŷyk=dt, and if this

estimate is less than a chosen tolerance, we set

Hn
i;j ¼ 0 0 0 0 ðŷy� yÞ= 1

2
Dtn

h iT
:

If, on the other hand, si;j is greater than the tolerance, then we reduce dt and re-calculate ~yy and ŷy. The new

value for si;j is checked and y is advanced to ŷy only if the estimate is less than the tolerance. For this case, a
few Runge–Kutta steps may be taken in order to integrate (21) to ð1=2ÞDtn. Ideally, only one step would be

needed, but in regions of rapid chemical reaction more Runge–Kutta steps are needed or, preferably, Dtn
must be decreased. Since rapid chemical reaction is often coupled to rapid spatial variations (near detonation

waves, for example) a decrease in Dtn and the grid spacings is appropriate for this case. The truncation error

is included in the error estimate (10) for this purpose, and the tolerances are set so that at most 2 Runge–

Kutta steps are taken on grids below the finest level allowed for the calculation. On the finest level, more

Runge–Kutta steps may be taken depending on the stiffness of the problem, and this gives an indication of

how well the reaction zones are resolved. Ideally, enough refinement levels are used so that no more than 1 or
2 Runge–Kutta steps are taken on all grid levels. This is the case for the calculations in this paper.

Finally, we note that the source term, H
nþ1=2
i;j , in (14) is computed in a similar manner but we now take

the fixed components in U to be those in ~UUi;j;0 and integrate (21) to a time Dtn.

3.3.4. Time step determination

For the computations presented in this paper, we use a global time step, Dt, for all grids (the subscript n
is suppressed here for notational convenience). A value for the global time step is re-calculated every few

time steps according to the formula

Dt ¼ r CFL min
16 g6Ng

Dtg;

where Dtg is the time step computed for component grid Gg and r CFL is a constant taken to be 0.9 for our

calculations. The time step for each component grid (including base grids and AMR grids) is determined

primarily from the Roe-averaged eigenvalues �kkðpÞ and �ll ðpÞ used in the calculation of the numerical fluxes (see

(15) and (19) for example). The time step also involves the coefficient mniþ1=2;j in (20) which is used in the
artificial viscosity contribution to the flux F

nþ1=2
i;j and mni;jþ1=2 which is added to G

nþ1=2
i;j . In particular, we set

Dtg ¼
KRe;g

2

� �2
(

þ KIm;g

1

� �2
)�1=2

;

where

KRe;g ¼ max
i2 �GGg

mniþ1=2;j;m
n
i;jþ1=2

� �
and

KIm;g ¼
1

Dr
max
i2 �GGg

max
p

�kkðpÞ
i

��� ���� �
þ 1

Ds
max
i2 �GGg

max
p

�ll ðpÞ
i

��� ���� �
:

Here, KRe;g and KIm;g are bounds for the real and imaginary parts of the time-stepping eigenvalue K (for grid

Gg) and we have approximated the stability region in the complex K-plane to be an ellipse with semi-axes 2

and 1. In the expressions for KRe;g and KIm;g, the maximum, maxi2 �GGg
, is taken over all computed flux lo-

cations on grid Gg. We note that in principle KRe;g would also include a contribution from the Godunov

scheme, but we have not found it necessary to add an estimate for this contribution.
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4. Numerical results

We now discuss the numerical solution of the reactive Euler equations for two specific problems. In

Section 4.1, we consider the evolution to detonation in a quarter-plane provoked by an initial temperature

gradient. This problem is inspired by the recent study in [25] where the evolution to detonation in one space

dimension is considered for an ideal gas with a one-step reaction model. In that study, the aim was to

determine the precise mechanisms leading to detonation depending on the size of the initial temperature

gradient. Here, we consider an extension of the problem to two space dimensions, and use it to test the
accuracy of the present numerical method when the domain is represented by either a single Cartesian grid

or an overlapping grid. In Section 4.2, we consider the propagation of an overdriven detonation in a

smooth expanding channel. The purpose here is to demonstrate the use of overlapping grids to represent the

channel geometry and to illustrate a mechanism of detonation failure for the three-step chain-branching

reaction model.
4.1. Evolution to detonation in a quarter-plane

We first consider the behavior of an unsteady reactive flow in a quarter-plane x > 0, y > 0. The flow is

modelled by the reactive Euler equations given in (1) and (2) with the one-step Arrhenius reaction term

given in (3) and (4). Initially, the flow is at rest and in a uniform state of pressure and species fraction. We

are interested in the evolution of the flow subject to a small linear temperature gradient, so that the initial
conditions are taken to be

uðx; 0Þ ¼ Y ðx; 0Þ ¼ 0; pðx; 0Þ ¼ 1; T ðx; 0Þ ¼ 1� dkxk;

where d > 0 is a parameter that measures the size of the temperature gradient. This parameter is assumed to

be small, of the order of the reciprocal activation energy � � 1, so that the reaction rate given in (3) varies

by an order one amount over an order one distance in x. As shown in [25] the size of the gradient on the �
scale plays a strong role in the mechanisms leading to detonation. The boundary conditions on x ¼ 0 and

y ¼ 0 are taken to be reflection conditions, so that the inviscid flow may be interpreted as the evolution of

an initial hot spot in a 90� corner bounded by solid walls. We will focus our attention on the behavior in the
window 06 x6 2 and 06 y6 2 and take numerical outflow conditions along x ¼ 2 and y ¼ 2. These

boundary conditions are similar to the ones used [25] and have a negligible effect on the numerical solution

in the window of interest. The quarter-plane flow is radially symmetric so that a highly resolved one-di-

mensional numerical solution to this problem can by obtained and used to check the numerical solution on

the two-dimensional domain which assumes no particular symmetry.

The solution of the problem evolves in response to the chemical reaction generated by the initial tem-

perature profile. There is an initial induction phase characterized by a relatively slow rise in temperature

and a correspondingly slow consumption of fuel. The initial variation in temperature creates a non-uniform
reaction rate which in turn leads to small acoustic disturbances that propagate radially in the flow. The

variation in density, velocity and pressure is very small during this phase. At the end of the induction phase,

at a time approximately equal to 1 according to the choice for r in (5), the temperature near the origin has

increased to a level where a strong reaction occurs. Depending on the value of d, a variety of scenarios

occur that may or may not lead ultimately to a detonation forming at some radial distance from the origin

and within our chosen computational domain (see [25] for a further discussion). For the calculations

presented in this section, we have made a choice for d such that the explosion at the origin leads to an

expanding detonation which first forms near kxk ¼ 0:6.
Fig. 6 shows the behavior of the product fraction Y , temperature T and pressure p at times t ¼ 1:50 and

t ¼ 1:85 for the case d ¼ 0:0375, Q ¼ �4:0, � ¼ 0:075 and c ¼ 1:4. The surfaces at t ¼ 1:50 (left column in



Fig. 6. Evolution to detonation in a quarter-plane. Surfaces of Y , T and p at t ¼ 1:50 (left column) and 1.85 (right column).
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the figure) show the local explosion which first occurs near the origin as indicated by the maximum value of

Y � 1 at that point. This explosion creates an expanding fast flame which transitions to a ZND detonation

near kxk ¼ 0:6. The surfaces at t ¼ 1:85 (right column in the figure) show this detonation structure. In the
surfaces of temperature and pressure, we note that the shock is very sharp and the expansion behind it is

smooth. The reaction zone immediately behind the shock is very thin and is resolved by approximately 80

grid cells across it on the finest AMR grids. There are small, fine-scale numerical oscillations along the ridge

of peak temperature and pressure, but these do not degrade the overall quality of the results. The calcu-

lation uses a single base grid with 400� 400 grid cells and two AMR grid levels on top of it with grid

refinement factor, nr, equal to 4. We found that a rather fine base grid is needed because the position of the

detonation front is sensitive to the solution during the induction phase when no AMR grids are present.

The parameters used in the error estimator in (10) for this calculation are c2 ¼ :03 and c3 ¼ sq ¼ ss ¼ 1, and
a grid cell is tagged for refinement when the estimate of the error is greater than 0.0005. The first AMR

grids appear near the end of the induction phase and a representative grid at t ¼ 1:85 is shown Fig. 7.



Fig. 7. The boundaries of the adaptive mesh refinement grids at t ¼ 1:85 for the expanding detonation calculation. On the left there is a

single square base grid with two levels of refinement. On the right there are two base grids, an annulus and a square, with two levels of

refinement on the annulus.
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The two-dimensional solution in the quarter-plane may be checked for accuracy by comparing it to a
highly resolved radially symmetric solution. Figs. 8(a) and 8(b) show the behavior of the temperature and

pressure, respectively, obtained from slices of the two-dimensional solution along y ¼ 0 at time intervals of

0.1 between t ¼ 1:4 and t ¼ 2:0. Very good agreement is observed between the solid curves given by the

two-dimensional calculation and the dotted curves given by the radially symmetric solution. A closer view

of the curves in the vicinity of the detonation at t ¼ 1:8 is shown in Figs. 8(c) and 8(d). In these plots, the

dashed curve is the radially symmetric solution and the solid curves are obtained from slices of the two-

dimensional calculation along rays y=x ¼ tan h for h ¼ 0�, 15�, 30� and 45�. Here, we note that the position

of the detonation and its peak values are in good agreement with the radially symmetric solution indicating
that the two-dimensional calculation is accurate and well resolved.

As an added check of the accuracy of the numerical approach, we now consider the effect of a grid

overlap on the numerical solution. This may be done by embedding an annular grid with 120� 320 cells

covering the region 0:756 kxk6 1:35 within the existing rectangular grid at the base level, and then re-

peating the calculation with two AMR grid levels as before. In this exercise, we are particularly interested in

whether any significant numerical error is generated due to the overlap during the induction phase which

would effect the later development of the detonation, or whether the passage of the detonation across the

overlap leads to any significant error in the solution. In either case, an error could be detected by a de-
viation in the position of the detonation at a given time or in the peak temperature or pressure generated by

the detonation. These are severe tests of the numerical approach due to the strong sensitivity of the reactive

flow. It is also of interest to check the AMR grid generation as the detonation passes from the rectangular

base grid to the annular base grid, and then back again.

Fig. 9 shows the behavior of the temperature and pressure at t ¼ 1:75, a time when the detonation

encounters the overlap near kxk ¼ 0:75. We note that the shock is sharp and that there is only small os-

cillations along the ridge of peak temperature and pressure with a similar amplitude as before. A closer look

at the solution is shown in Fig. 10 where we show a comparison of slices of the surfaces of temperature and
pressure at t ¼ 1:8 computed using the rectangular base grid and the annular embedded grid. In this plot,

we note no significant difference in the detonation position or its peak values, indicating that there is no

increased error due to the overlap. A check of the behavior of the AMR grid as the detonation crosses the

overlap near kxk ¼ 0:75 is shown in Fig. 11. Here, we have a computed the solution using a coarser base



Fig. 9. Behavior of the temperature and the AMR grid at t ¼ 1:75 for a two-dimensional calculation on a rectangular base grid with an

embedded annular grid.

Fig. 8. Behavior of the temperature (a) and pressure (b) along y ¼ 0 for 1:46 t6 2:0 with time interval equal to 0.1 between curves,

and the behavior of temperature (c) and pressure (d) in the vicinity of the detonation at t ¼ 1:8. The solid curves are slices of the two-

dimensional calculation and the dashed curves are from the radially symmetric solution.
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grid so that the grid structure may be seen more readily. The plot shows an enlarged view of the grid and

shows the transition of AMR grids from the rectangular base grid to the annular one as determined by the

error estimator.



Fig. 10. Behavior of the temperature (a) and pressure (b) along y ¼ 0 in the vicinity of the detonation at t ¼ 1:8. The solid curves are

from the grid with the embedded annulus and the dashed curves are from the rectangular grid with no annulus. The two solutions are

nearly indistinguishable.

Fig. 11. AMR grid at t ¼ 1:75 for a two-dimensional calculation on a coarser rectangular base grid with an embedded annular grid.
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4.2. Detonation wave propagation in an expanding channel

We now consider a problem involving the propagation of a detonation wave in an expanding channel.

The channel geometry is shown in Fig. 12. It consists of a straight inlet section for x < 0, a smooth ex-

pansion section from x ¼ 0 to x ¼ 5, approximately, where the bottom wall slopes downward at a 45� angle,
and finally an outlet section for x > 5 where the bottom wall becomes flat again. The channel geometry is
handled readily with a composite overlapping grid as shown in the figure. There is a background Cartesian

grid upon which a boundary-fitted grid and an inlet grid are overlaid. The boundary-fitted grid is used to

handle the curved bottom wall smoothly and the inlet grid is used so that the initial detonation may be

represented on a single grid. As in the previous problem, two AMR grid levels will be employed to locally

increase the resolution of the numerical solution.



Fig. 12. Expanding-channel geometry and overlapping grid representation. The top view shows the base grid, which, for illustrative

purposes, is coarser by a factor of 2 in each direction than that used in the calculation. The middle and bottom illustrations show the

boundaries of the refinement patches at t ¼ 5 and t ¼ 14, respectively.
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For this expanding-channel problem, we consider the reactive Euler equations with the three-step chain-

branching reaction model given in (6) and (7). It is assumed that a steady, overdriven detonation wave

exists in the inlet section of the channel at t ¼ 0, and that the flow ahead of the wave is uniform and at rest.

Let us suppose that the steady wave propagates with speed D and that q0, u0 ¼ v0 ¼ 0, p0, Y0 ¼ 0 denote the

density, velocity, pressure, and species fractions (product and radical) ahead of the wave, respectively. We

assume that the detonation is overdriven so that D ¼ r DCJ, where r > 1 is a chosen parameter measuring
the overdrive and DCJ is the Chapman–Jouguet detonation speed given by

DCJ

a0

� �2

¼ #þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
#2 � 1

p
; # ¼ 1þ ðc2 � 1Þ ð�Q1Þ

a20
;

where a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp0=q0

p
is the sound speed ahead of the wave and �Q1 > 0 is the heat release [36]. The state of

the flow immediately behind the leading shock, denoted by quantities with subscript 1, is determined by the

usual shock conditions
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q1

q0

¼ ðcþ 1ÞM2

ðc� 1ÞM2 þ 2
;

u1
a0

¼ 2ðM2 � 1Þ
ðcþ 1ÞM ;
p1
p0

¼ 1þ 2cðM2 � 1Þ
cþ 1

;

whereM ¼ D=a0 (see [37]). The post-shock species fractions remain zero, and the flow is one-dimensional so

that v1 ¼ 0. The behavior of the flow in the reaction zone downstream of the post-shock state can be

worked out from the governing equations in (1) and (2) assuming that v ¼ 0 and that the remaining

variables depend upon the variable n ¼ x� Dt alone. Under these assumptions the equations for the flow

reduce to ordinary differential equations, and these may be integrated numerically from the shock at n ¼ n0

towards n ! �1. The asymptotic state far downstream of the shock is uniform and denoted by quantities
with subscript 2.

Fig. 13 shows the steady detonation profile at t ¼ 0 for the choice of parameters given in Table 1. The

parameters chosen for the chain-branching reaction model follow the general prescription

TI > T1; TB < T1; �I � �B � 1; Q2 ¼ 0;

which is typical of the dynamics of chain-branching chemistry [22]. The temperature ahead of the shock

is lower than both the initiation and branching cross-over temperatures so that there is no significant
Fig. 13. Steady overdriven detonation wave structure: (a) temperature T , product k ¼ Y1, radical y ¼ Y2 and fuel f ¼ 1� Y1 � Y2; and
(b) density q, velocity u and pressure p.

Table 1

Parameters for the expanding-channel problem

c ¼ 1:4 Q1 ¼ �1 Q2 ¼ 0

TI ¼ 3 TB ¼ 0:75 �I ¼ 0:05 �B ¼ 0:125

D ¼ 2:1896 DCJ ¼ 1:6843 r ¼ 1:3 n0 ¼ �0:3

q0 ¼ 0:2541 u0 ¼ 0 p0 ¼ 0:0913 T0 ¼ 0:3593

q1 ¼ 1 u1 ¼ 1:6332 p1 ¼ 1 T1 ¼ 1

q2 ¼ 0:6994 u2 ¼ 0:7955 p2 ¼ 0:8670 T2 ¼ 1:2395
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conversion of fuel to either radical or product. Behind the shock the temperature rises above the branching

cross-over temperature so that a rapid production of radical and a correspondingly rapid consumption of

fuel occur. This is seen in Fig. 13(a) by the rapid increase in the fraction of radical and the rapid decrease in

the fraction of fuel behind the shock. There is an induction delay before this occurs due to the exponentially

small amount of radical available immediately behind the shock. There is no heat release associated with

the branching reaction since Q2 ¼ 0 is assumed, but the rapid increase in radical triggers the completion

reaction and its associated consumption of radical and release of heat. As a result of this heat release, the

temperature rises and the density and pressure fall, and all approach an asymptotic state downstream of the
shock as the radical fraction approaches zero.

In order to support the steady overdriven detonation, we envision a piston driving the flow at some

distance downstream of the wave in its asymptotic tail and to the far left of the chosen computational

domain shown in Fig. 12. The effect of the piston is made by imposing inflow boundary conditions given by
Fig. 14. Detonation failure in an expanding channel: temperature T , radical fraction y ¼ Y2, and product fraction k ¼ Y1 at t ¼ 3 (left

column) and t ¼ 5 (right column).
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the asymptotic state with subscript 2 in Table 1 at x ¼ �10. The bottom curved wall is assumed to be a solid

wall, and a zero normal flow boundary condition is imposed there. The boundary condition on the top wall

is a reflection condition, and an outflow boundary condition is used at the outlet along x ¼ 30.

The shaded contour plots in Fig. 14 show the behavior of the temperature T , radical fraction y ¼ Y2 and
product fraction k ¼ Y1 at times t ¼ 3 and 5. The expansion near the bottom wall weakens the detonation

and its leading shock resulting in a decrease in the post-shock temperature. As the post-shock temperature

falls below the cross-over temperature, TB ¼ 0:75, the branching reaction fails and the initial steady peak in

y thins and decreases in amplitude. There is no significant production of radical beyond this point, but the
completion reaction continues to convert any available radical to product which leads to the formation of a

contact discontinuity as is seen most clearly in the behavior of k near the bottom wall. The detonation

remains steady along the upper wall in the plots shown, but would eventually weaken as the expansion from

the bottom wall reaches it. We also note that a secondary shock forms near the bottom wall due a com-

pression created between the low-pressure gas generated by the expansion at the smooth corner and the

high-pressure gas left behind by the failing detonation.

A more detailed view of the behavior of the temperature and the radical fraction along the bottom wall is

shown in Fig. 15. The sequence of curves in Fig. 15(a) shows the temperature at unit time intervals from
t ¼ 0 to t ¼ 5. At t ¼ 0, the post-shock temperature is 1, but this values falls quickly as the detonation

expands around the smooth corner, and by t ¼ 2 the value is below TB ¼ 0:75. Beyond t ¼ 2, we see first the

formation of a contact discontinuity and then a second shock behind the lead shock of the failed deto-

nation. By t ¼ 5, this wave structure is well developed. The behavior of the radical fraction shown in

Fig. 15(b) gives additional insight in the mechanism of detonation failure for the three-step, chain-

branching model. In this model, the generation of the radical species is essential for the detonation. As the

detonation expands, the peak in the radical thins and lowers which in turn starves the completion reaction.

There is a corresponding decrease in the heat released by the completion reaction which is no longer
available to support the detonation.

At later times, the leading shock enters the outlet section of the channel where the bottom wall becomes

horizontal. This compression creates a Mach reflection of the leading shock as seen in the shaded contour

plots of temperature in Fig. 16. The temperature behind the Mach stem is higher than TB so that the

branching reaction is turned back on and a significant production of radical occurs at a short distance

behind the Mach stem as is seen in the plots of radical fraction. The production of radical, in turn, feeds the

completion reaction and its generation of heat which further strengthens the Mach stem. The product
Fig. 15. Behavior of the (a) temperature and (b) radical fraction along the bottom wall of the expanding channel for unit times between

t ¼ 0 and t ¼ 5. The arclength is measured from the inlet at x ¼ �10.



Fig. 16. Detonation rebirth at a Mach reflection: temperature T , radical fraction y ¼ Y2, and product fraction k ¼ Y1 at t ¼ 10 (left

column) and t ¼ 14 (right column).
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fraction created by the completion reaction advects with the flow and funnels into a narrow region close to

the bottom wall. As the wave structure advances in the outlet section, we note a �island� of increased radical

fraction growing behind the leading shock. This is a result of the temperature rise behind the reflected shock

at the triple point of the Mach reflection. Finally, we also note a clear roll-up of the vortex sheet from the

triple point in this well-resolved calculation.

4.3. Code performance

We conclude the discussion of the results by providing some performance statistics for both the quarter-
plane and expanding-channel calculations. (The quarter-plane statistics are for the calculation using the

overlapping grid.) Table 2 gives the total number of time steps taken for each calculation, and gives in-

formation concerning the number of grids and grid points used. Here, we note that the expanding-channel



Table 3

CPU time (in seconds) per step for various parts of the code and their percentage of the total CPU time per step

Quarter-plane Expanding channel

(s)/step % (s)/step %

Compute DUn
i;j 13.85 92.7 11.50 82.4

Boundary conditions .12 .8 .14 1.0

Interpolation (overlapping) .09 .6 .45 3.2

AMR regrid/interpolation .54 3.6 1.62 11.6

Other .34 2.3 .25 1.8

Total 14.94 100 13.96 100

Table 2

Total number of time steps and the minimum, average and maximum number of grids and grid points used for the quarter-plane and

expanding-channel calculations

Quarter-plane Expanding channel

Time steps 12,418 21,030

Grids (min, ave,max) (2, 57, 353) (5, 274, 588)

Points (min, ave,max) (2.0e5, 9.2e5, 1.9e6) (1.2e5, 6.4e5, 1.3e6)
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calculation required significantly more time steps and grids (both average and maximum number), although

the number of grid points used for the two calculations is about the same. Both calculations use 2 AMR

grid levels with nr ¼ 4 so that a comparable grid resolution without adaptive mesh refinement would re-

quire a grid with 256 times more points on the base level. For the quarter-plane calculation, for example,

this would require about 52 million points instead of the average of about 1 million points actually used.

A break down of the average CPU time spent on various parts of the code is given for both calculations

in Table 3. These results show that the overhead due to the use of overlapping grids and adaptive mesh

refinement is quite acceptable. Most of the CPU time is spent computing the difference approximation to
the reactive Euler equations, i.e. DUn

i;j 	 Unþ1
i;j �Un

i;j in (14) for all component grids. Even though most of

the computer code is written in C++, a number of critical routines are written in Fortran or C. The dis-

cretization of the reactive Euler equations, for example, is written in Fortran and optimized for perfor-

mance. The CPU time spent on computing boundary conditions or interpolating at grid overlaps is very

small. The time spent on AMR regridding and interpolation depends on the number of AMR grids re-

quired during the calculation. The largest value occurred for the expanding-channel calculation, but this

value, 11.6%, is still relatively small. For reference, the computations were performed on a Linux desktop

with a 2.2 GHz Xeon processor and 2 Gbytes of memory.
5. Conclusions

We have described a numerical approach for the solution of high-speed reactive flows in complex geom-

etries. The reactive Euler equations are discretized using a second-order Godunovmethod for the fluxes and a

Runge–Kutta time-stepping procedure for the source termmodelling the chemical reactions. The geometry is

represented with overlapping grids. Adaptive mesh refinement is used to accurately resolve fine temporal and
spatial scales dictated by the fast chemistry and the wave structures (shocks and detonations) that develop.

We have described an implementation of a block-structured AMR approach for curvilinear overlapping

grids. The implementation includes an error-estimator which we have tuned for our discretization of the
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reactive Euler equations, as well as procedures for regridding and interpolation which we have described for

overlapping grids.

We have presented numerical results for two problems involving high-speed reactive flow. The first

problem, the evolution to detonation in a quarter-plane, is used to validate the present numerical approach

in comparison to a highly resolved radially symmetric calculation. Excellent agreement is obtained between

the radially symmetric solution and the corresponding solution using the present numerical method on a

two-dimensional grid (without assuming axial symmetry). This agreement is obtained for calculations using

either a single Cartesian grid on the base level or an overlapping grid. In the latter case, we have examined
the propagation of a detonation through the interface between overlapping component grids and have

shown that the overlap does not create any additional error in the numerical solution. The second example

considers the propagation of an overdriven detonation in a smooth expanding channel. For this case, we

have demonstrated the use of an overlapping grid to handle the flow geometry and have described

mechanisms for detonation failure and rebirth within a three-step, chain-branching reaction model. The

essential feature of the failure/rebirth mechanism involves the interplay between the flow geometry and the

weakening/strengthening of the leading shock of the detonation. For the chain-branching model,

the production of radical species from fuel is essential for the detonation, and this reaction is sensitive to the
post-shock temperature. Flow divergence weakens and the shock and lowers the corresponding post-shock

temperature leading to detonation failure, and this process was illustrated in our example calculation. In a

later section of the channel, a flow convergence occurred and this resulted in a rebirth of the detonation.

Finally, we have given some performance statistics for our two example calculations and these have

shown that the main computational cost involves the discretization of the equations on the collection of

component grids and that the overhead cost for interpolation at grid overlaps and for AMR regridding and

interpolation is small, approximately 15% of the total cost for the larger of the two example calculations.
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